National Laboratory/University Perspective on Existing RD&D

GridWorks RD&D Planning Workshop October 20-21, 2004

Stan Atcitty
Power Source Engineering Dept.
Sandia National Laboratories

Outline

- Introduction
- Power Electronics Issues and Needs
- Project Examples
- Conclusion

DOE Energy Storage Program

- Funded by DOE's Office of Transmission & Distribution Energy Storage Program (Dr. Imre Gyuk)
- Sandia National Laboratories manages program for DOE
- Develop advance energy storage technologies that increase the security, reliability, performance, and competitiveness of electricity generation, transmission, distribution, and use in both grid-connected and off-grid systems
- Focus: Integrated energy storage systems using batteries, SMES, flywheels, supercapacitors, other advanced energy storage devices and power electronics
- Encourage program participation by industry, academia, research organization and regulatory agencies

Power Conversion Systems

Power Conversion System (PCS) is a key element of the ESS

Power Electronics Issues Today

• Cost Lower cost, standardization/modularity

Reliability
 Reliable active & passive components

Semiconductor Switches High power & faster switching devices

High-temp devices & passive components

• Thermal Management Advance cooling methods

Controls
 Advance digital controls/master control

for multiple converters

Footprint High density converters

Power Quality
 Low harmonic voltage & currents

Electromagnetic Interference Low interference

Cost and Reliability are key

Summary of Silicon Power Device Capabilities

An Example: Emitter Turn-Off Thyristor (ETO)

Wide Band Gap Device Research

- Advantages
 - High Frequency Operation
 - Less Switching Losses
 - Higher Blocking Voltages
 - Higher Operating Temperature
- Disadvantages
 - Expensive
 - Limited Current Level

Source: Power Electronics Technology at the Dawn of the New Millenium - Status & Future

- Major funding from DARPA and ONR
- DOE/Sandia FY05 SBIR Solicitation (WBG Device Application)
- ORNL WBG Device Application
- Today's Manufacturers
 - Cree Inc. and Infineon Technologies (SiC Schottky Diodes)

Chemical Vapor Deposition Diamond Research

CATHODE

- → 5 X's higher voltage
- → 5X's higher temperature of operation
- → 4X's higher thermal conductivity than copper
- → Fast Switching in a vacuum

Replace solid state devices

vacuum

- •RF/Microwave Power Devices
- Power Amplifier
- •Power/Voltage Controls
- Electric Power Industry
- Pulsed Power Systems
- Electric Automobile
- •Plasma Contactor High
- •Ion Propulsion

ANODE

Single Diamond Tip

Diamond Tip Array

Source: Jim Davidson, Vanderbilt University

High Power Semiconductor Switch Applications

- FACTS Controllers
 - STATCOM, DSTATCOM, SSSC, DVR
- Substation Uninterruptible Power Supplies
- Solid-State Circuit Breakers
- Fault-Current Limiters
- Solid-State Transformers
- Motor Drives
- Power Systems for Future DoD Platforms

Emitter Turn-Off Thyristor Demonstration Project

Infinite Bus

- ➤ 13. 8 kV transformerless STATCOM + energy storage
- Housed in one mobile trailer
- Placed close to customer
- Nominal 30 MVA, 60 MVA 2 second surge.
- Energy storage: 15 MW,2 second active power

Ultracaps Energy Storage

FACTS Controllers Research

- Flexible AC Transmission System (FACTS): Alternating current transmission systems incorporating power electronics-based and other static controllers to enhance controllability and increase power transfer capability IEEE Definition
- STATCOM, DSTATCOM, SSSC, DVR
- Current Issues
 - Cost
 - Becoming competitive
 - Cost vs. Benefit vs. Cost of Alternatives
 - Regulatory issues
 - Lifetime experience is limited
 - Numbers are growing
 - Experience is good but need more
 - Utility Reluctance need help on learning curve
 - Reliability
 - Not quite a mature technology

FACTS Controllers Research

EPRI Sponsored Installations

- Sullivan Substation (TVA, 1995)
- Inez Substation (AEP, 1998)
- Eagle Pass (CSW, 2000)
- Marcy Substation (NYPA, 2000 & 2003)

Current Energy Storage Projects

- North Carolina State University ETO-based FACTS
- University of Missouri-Rolla University-based FACTS plus Energy Storage
- Airak, Inc. Optically isolated HVIGBT-based FACTS

ORNL's Power Electronics Research Areas

 Hybrid electric vehicle (HEV) applications such as motor drives or DC-DC converters

Soft-switching inverters and DC-DC converters

 Application of wide-band gap power electronics such as silicon carbide (SiC)

Sandia

 Thermal management and packaging of power electronics especially for high-temperature environments

Source: Leon M. Tolbert, ORNL

Stan Atcitty Senior Member of Technical Staff Energy Storage Program Sandia National Laboratories

Phone: 505-284-2701

Email: satcitt@sandia.gov

